You are here:

Gender differences in learning physical science concepts: Does computer animation help equalize them?

, Oregon State University, United States

Oregon State University . Awarded


This dissertation details an experiment designed to identify gender differences in learning using three experimental treatments: animation, static graphics, and verbal instruction alone. Three learning presentations were used in testing of 332 university students. Statistical analysis was performed using ANOVA, binomial tests for differences of proportion, and descriptive statistics. Results showed that animation significantly improved women's long-term learning over static graphics (p = 0.067), but didn't significantly improve men's long-term learning over static graphics. In all cases, women's scores improved with animation over both other forms of instruction for long-term testing, indicating that future research should not abandon the study of animation as a tool that may promote gender equity in science. Short-term test differences were smaller, and not statistically significant. Variation present in short-term scores was related more to presentation topic than treatment.

This research also details characteristics of each of the three presentations, to identify variables (e.g. level of abstraction in presentation) affecting score differences within treatments. Differences between men's and women's scores were non-standard between presentations, but these differences were not statistically significant (long-term p = 0.2961, short-term p = 0.2893). In future research, experiments might be better designed to test these presentational variables in isolation, possibly yielding more distinctive differences between presentational scores. Differences in confidence interval overlaps between presentations suggested that treatment superiority may be somewhat dependent on the design or topic of the learning presentation. Confidence intervals greatly overlap in all situations. This undercut, to some degree, the surety of conclusions indicating superiority of one treatment type over the others. However, confidence intervals for animation were smaller, overlapped nearly completely for men and women (there was less overlap between the genders for the other two treatments), and centered around slightly higher means, lending further support to the conclusion that animation helped equalize men's and women's learning. The most important conclusion identified in this research is that gender is an important variable experimental populations testing animation as a learning device. Averages indicated that both men and women prefer to work with animation over either static graphics or verbal instruction alone.


Jacek, L.L. Gender differences in learning physical science concepts: Does computer animation help equalize them?. Ph.D. thesis, Oregon State University. Retrieved August 3, 2021 from .

This record was imported from ProQuest on October 23, 2013. [Original Record]

Citation reproduced with permission of ProQuest LLC.

For copies of dissertations and theses: (800) 521-0600/(734) 761-4700 or