Login or register for free to remove ads.
You are here:

Using Learning Analytics for Preserving Academic Integrity ARTICLE

, , Department of Computer Science, Multimedia and Telecommunications Universitat Oberta de Catalunya (UOC), Rambla del Poblenou, 156, 08018 Barcelona, Spain ; , Greece ; , Department of Computer Science, Multimedia and Telecommunications Universitat Oberta de Catalunya (UOC), Rambla del Poblenou, 156, 08018 Barcelona, Spain

IRRODL Volume 18, Number 5, ISSN 1492-3831 Publisher: Athabasca University Press

Abstract

This paper presents the results of integrating learning analytics into the assessment process to enhance academic integrity in the e-learning environment. The goal of this research is to evaluate the computational-based approach to academic integrity. The machine-learning based framework learns students\u2019 patterns of language use from data, providing an accessible and non-invasive validation of student identities and student-produced content. To assess the performance of the proposed approach, we conducted a series of experiments using written assignments of graduate students. The proposed method yielded a mean accuracy of 93%, exceeding the baseline of human performance that yielded a mean accuracy rate of 12%. The results suggest a promising potential for developing automated tools that promote accountability and simplify the provision of academic integrity in the e-learning environment.

Citation

Amigud, A., Arnedo-Moreno, J., Daradoumis, T. & Guerrero-Roldan, A.E. (2017). Using Learning Analytics for Preserving Academic Integrity. The International Review of Research in Open and Distributed Learning, 18(5),. Athabasca University Press. Retrieved September 21, 2017 from .

Keywords