You are here:

Impact of distributed virtual reality on engineering knowledge retention and student engagement
DISSERTATION

, Georgia Institute of Technology, United States

Georgia Institute of Technology . Awarded

Abstract

Engineering Education is facing many problems, one of which is poor knowledge retention among engineering students. This problem affects the Architecture, Engineering, and Construction (A/E/C) industry, because students are unprepared for many necessary job skills. This problem of poor knowledge retention is caused by many factors, one of which is the mismatch between student learning preferences and the media used to teach engineering.

The purpose of this research is to assess the impact of Distributed Virtual Reality (DVR) as an engineering teaching tool. The implementation of DVR addresses the issue of poor knowledge retention by impacting the mismatch between learning and teaching style in the visual versus verbal spectrum. Using as a point of departure three knowledge domain areas (Learning and Instruction, Distributed Virtual Reality and Crane Selection as Part of Crane Lift Planning), a DVR engineering teaching tool is developed, deployed and assessed in engineering classrooms.

The statistical analysis of the data indicates that: (1) most engineering students are visual learners; (2) most students would like more classes using DVR; (3) engineering students find DVR more engaging than traditional learning methods; (4) most students find the responsiveness of the DVR environments to be either good or very good; (5) all students are able to interact with DVR and most of the students found it easy or very easy to navigate (without previous formal training in how to use DVR); (6) students' knowledge regarding the subject (crane selection) is higher after the experiment; and, (7) students' using different instructional media do not demonstrate statistical difference in knowledge retained after the experiment.

This inter-disciplinary research offers opportunities for direct and immediate application in education, research, and industry, due to the fact that the instructional module developed (on crane selection as part of construction crane lift planning) can be used to convey knowledge to engineers beyond the classrooms. This instructional module can also be used as a workbench to assess parameters on engineering education such as time on task, assessment media, and long-term retention among others.

Citation

Sulbaran, T.A. Impact of distributed virtual reality on engineering knowledge retention and student engagement. Ph.D. thesis, Georgia Institute of Technology. Retrieved November 19, 2019 from .

This record was imported from ProQuest on October 23, 2013. [Original Record]

Citation reproduced with permission of ProQuest LLC.

For copies of dissertations and theses: (800) 521-0600/(734) 761-4700 or https://dissexpress.umi.com

Keywords