You are here:

Digital Technologies in a Design and Technology Lesson and Their Influence on a Learner’s Situationally Perceived Value of a Task When Engaged in Inquiry-Based Learning

, South Thames College London, United Kingdom ; , Teacher Training College Krems, Austria

JCMST Volume 37, Number 3, ISSN 0731-9258 Publisher: Association for the Advancement of Computing in Education (AACE), Waynesville, NC USA


The motivation to engage in a task is directly related to its perceived value according to Deci & Ryan (1985). Increasing motivation can lead to a higher student’s enhanced learning achievement. The question is if using digital technologies in inquiry-based learning lessons influences the learners’ situationally perceived value of the task and if a higher perceived value leads to a more successful learning outcome. 207 Pupils were questioned with the standardised IMI (Intrinsic Motivational Inventory) after carrying out an experiment in a design and technology. The architectural science-based task was to build a bridge out of a couple of sheets of paper. Half of the class used digital technologies for their research and half of them functioned as the control group using traditional media. There was a significant difference between the two groups: the treatment group felt the task to be more valuable than the control group (t188.920= 2.504, p = 0.13). There was a correlation between a higher learning outcome and a higher perceived value of the task, which was considered to be small (r = 0.14, p = 0.45).


Heindl, M. & Nader, M. (2018). Digital Technologies in a Design and Technology Lesson and Their Influence on a Learner’s Situationally Perceived Value of a Task When Engaged in Inquiry-Based Learning. Journal of Computers in Mathematics and Science Teaching, 37(3), 239-263. Waynesville, NC USA: Association for the Advancement of Computing in Education (AACE). Retrieved November 21, 2018 from .

View References & Citations Map


  1. Attard, A., Iorio, E., Geven, K., & Santa, R. (2016). Time for a new paradigm in education: student-centred-learning. Retrieved from
  2. Barthlow, M. J. (2011). The Effectiveness of Process Oriented Guided Inquiry Learning to Reduce Alternate Conceptions in Secondary Chemistry. Liberty University, VA. Retrieved from
  3. Berardo, S. A. (2006). The use of authentic materials in the teaching of reading. The Reading Matrix, 6(2), 60–69.
  4. Bruce, B. C., & Levin, J. A. (1997). Educational Technology: Media for Inquiry, Communication, Construction, and Expression. Journal of Educational Computing Research, 17(1), 79–102.
  5. Bruner, J. S. (1961). The Act of Discovery. Harvard Educational Review, 31, 21–32.
  6. Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum.
  7. Dreschner, A. (2012). Enteckendes Lernen bilingual? In S. Liebig (Ed.), Entdeckendes Lernen. Ein Unterrichtsprinzip (pp. 124–139). Baltmannsweiler: Schneider Verlag Hohengehren.
  8. Ergül, R., Simesekli, Y., Calis, S., Özdilek, Z., Göcmencelebi, S., & Sanli, M. (2011). The effects of inquiry-based science teaching on elementary school students’ science process skills and science attitudes. Bulgarian Journal of Science and Education Policy, 5(1), 48–68. Retrieved from
  9. ERIC. (2017). ERIC - Education Resources Information Center. Retrieved October 20, 2017, from
  10. Federal Ministry of Science and Inquiry. (2013). Sparkling Science. Retrieved February 12, 2018, from
  11. Feltovich, P. J., Spiro, R. J., & Coulson, R. L. (2009). Learning, Teaching, and Testing for Complex Conceptual Understanding. In N. Frederiksen, R. J. Mislevy,
  12. Gagné, M., & Deci, E. L. (2005). Self-determination theory and work motivation. Journal of Organizational Behavior, 26(4), 331–362.
  13. Gormally, C., Brickman, P., Hallar, B., & Armstrong, N. (2009). Effects of Inquirybased Learning on Students’ Science Literacy Skills and Confidence. International Journal for the Scholarship of Teaching and Learning, 3(2). Https://doi.
  14. Org/
  15. Harwood, W. S. (2005). The author replies. Journal of Chemical Education, 82(5), 682–683.
  16. Hasan, A. S. H. (2012). The Effects of Guided Inquiry Instruction on Students’ Achievement and Understanding of the Nature of Science in Environmental Biology Course. Dubai: British University. Retrieved from https://bspace.buid
  17. Higgins, S., Xiao, Z., & Katsipataki, M. (2012). The Impact of Digital Technology on Learning: A Summary for the Education Endowment Foundation Full Report. Durham. Retrieved from
  18. Hofer, H. (1996a). Flechtenkartierung mit Schülern. VÖBL Zeitschrift Der Vereinigung Österreichischer Biologielehrer, 2(96), 8–10.
  19. Hofer, H. (1996b). Stärkeverteilung im Blatt der Buntnessel und Schülervorstellungen dazu. VÖBL Zeitschrift Der Vereinigung Österreichischer Biologielehrer, 2(96), 8–10.
  20. Hoidn, S. (2016). Student-Centered Learning Environments in Higher Education Classrooms. New York: Palgrav Macmillan.
  21. Huber, L. (2009a). Forschendes Lernen an Hamburger Hochschulen. In L. Huber, J. Hellmer, & F. Schneider (Eds.), Forschendes Lernen im Studium: aktuelle Konzepte und Erfahrungen (pp. 200–223). Bielefeld: UVW, Webler.
  22. Huber, L. (2009b). Warum Forschendes Lernen nötig und möglich ist. In L. Huber, J. Hellmer, & F. Schneider (Eds.), Forschendes Lernen im Studium (pp. 9’36). Bielefeld: Universitätsverlag Webler.
  23. Lazonder, A. W., & Harmsen, R. (2016). Meta-Analysis of Inquiry-Based Learning. Review of Educational Research, 86(3), 681–718. Https://doi.
  24. Org/
  25. Lederman, N. G. (1996). The electronic journal of science education: EJSE. Electronic Journal of Science Education, 3(2), 1–11.
  26. McComas, W. F., Almazroa, H., & Clough, M. P. (1998). The Nature of Science in Science Education: An Introduction. Science & Education, 7(6), 511–532.
  27. McLaughlin, C. (2007). Networking practitioner research. London: Routledge.
  28. McLaughlin, C. (2009). Architektur und Entwicklung der Lehrerforschung im Vereinigten Königreich. In N. Hollenbach & K. J. Tillmann (Eds.), Architektur und Entwicklung der Lehrerforschung im Vereinigten Königreich (pp. 67–85). Bad Heilbronn: Klinkhardt.
  29. Meij, H., Meij, J., & Harmsen, R. (2015). Animated pedagogical agents effects on enhancing student motivation and learning in a science inquiry learning environment. Educational Technology Research and Development, 63(3), 381–403.
  30. Messner, R. (2009). Forschendes Lernen aus pädagogischer Sicht. In R. Messner (Ed.), Schule forscht: Ansätze und Methoden zum forschenden Lernen (pp. 15– 30). Hamburg: Ed. Körber-Stiftung.
  31. Ministry of Education Science and Research. (2016). Die kompetenzorientierte Reifeprüfung Vorwissenschaftliche Arbeit. Vienna. Retrieved from https://bildung.bmbwf
  32. Ministry of Education Science Professional Development and Culture. (2013). Handreichung Arbeitsformen in der gymnasialen Oberstufe. Pfalz. Retrieved from De/mss/HandreichungArbeitsformenMSS.pdf
  33. Museum of Science and Industry. (2017). At a glance advance preparation. Chicago. Retrieved from
  34. National Academies of Sciences Engineering and Medicine. (2000). Inquiry and the National Science Education Standards. Washington, D.C.: National Academies Press.
  35. Reiff, R., Harwood, W. S., & Phillipson, T. (2002). A Scientific Method Based upon Research Scientists’ Conceptions of Scientific Inquiry. In National Association for Research in Science Teaching. New Orleans.
  36. Reitinger, J. (2013). Forschendes Lernen : Theorie, Evaluation und Praxis in naturwissenschaftlichen Lernarrangements. Immenhausen bei Kassel: Prolog-Verlag.
  37. Robinson, W. R. (2004). The Inquiry Wheel, an Alternative to the Scientific Method. A View of the Science Education Research Literature. Journal of Chemical Education, 81(6), 791.
  38. Roth, G. (2009). Schule forscht Ansätze und Die Bedeutung von Motivation. In R. Messner (Ed.), Schule forscht. (pp. 55-76). Hamburg: Ed. Köber-Stiftung. Ryan, R. M., & Connell (1989). Perceived Locus of Causality and Internalization: Examining Reasons for Acting in Two Domains. Journal of Personality and Social Psychology, (57), 749–761. Retrieved from
  39. Ryan, R. M., & Deci, E. L. (2000). Self-Determination Theory and the Facilitation of Intrinsic Motivation, Social Development, and Well-Being. American Psychologist, 55(1), 68–78. Retrieved from
  40. Sandholtz, J.H., Ringstaff, C., & Dwyer, D. C. (1997). Teaching with Technology. New York. Retrieved from
  41. Schiefele, U., & Köller, O. (2006). Intrinsische und Extrinsische Motivation. In H. D. Roth (Ed.), Handwörterbuch pädagogische Psychologie. Beltz, PVU.
  42. Simpkins, S. D., Vest, A. E., & Becnel, J. N. (2010). Participating in sport and music activities in adolescence: the role of activity participation and motivational beliefs during elementary school. Journal of Youth and Adolescence, 39(11), 1368–86.
  43. Stenhouse, L. (1980). The Study of Samples and the Study of Cases. British Educational Research Journal, (1), 1–6.
  44. Stiftung Schweizer Jugend forscht. (2005). Leitfaden Anleitung für das Verfassen einer wissenschaftlichen Projektarbeit. Basel. Retrieved from
  45. Ulm, V. (2009). Eine natürliche Beziehung. Forschendes Lernen im Mathematikunterricht. In R. Messner (Ed.), Schule forscht: Ansätze und Methoden zum forschenden Lernen (pp. 89–105). Hamburg: Ed. Körber-Stiftung.
  46. University of Rochester (2016). PuppyIR. Children IMI. Retrieved from http://hmi.ewi
  47. Vansteenkiste, M., Lens, W., & Deci, E. L. (2006). Intrinsic Versus Extrinsic Goal Contents in Self-Determination Theory: Another Look at the Quality of Academic Motivation. Educational Psychologist, 41(1), 19–31. Retrieved from
  48. Wright, G. B. (2011). Student-Centered Learning in Higher Education The Balance of Power. International Journal of Teaching and Learning in Higher Education, 23(3), 92–97.

These references have been extracted automatically and may have some errors. If you see a mistake in the references above, please contact